Linux Kernel Hacking Free Course, 3rd edition

M. Cesati
University of Rome “Tor Vergata”

Linux, the caches, and you

e

March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

About this lecture

While preparing this lecture, | asked myself:

“What have you learned from Linux that might be of interest for any
programmer?”

| was quickly forced to focus on some specific topic, otherwise this lecture would
become way too long

And the winneris: Linux and the caches (and you, of course!)

1 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Roadmap (sort of)

So, now I'll try my best to:
e explain the “cache problem”
e present some scenarios in which caches make really a difference

e introduce some techniques (learned from the Linux source code) to fully
exploit the caches

e keep you awake!

2 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Memory can't keep up

CPU speed grows much faster than hard disk and DRAM speed:

Faster CPU

/ DRAM

Hardware
speed

Slower

Y

1970 1980 19590 2000

Time

3 Linux, the caches, and you

March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

What'’s the matter, then?

It is a matter of time:
e Typical random access time for a PC100 (S)DRAM chip is 40 nanoseconds
e A2 GHz CPU may execute up to 80 register operations in 40 nanoseconds
and also a matter of costs:
e DRAM cells are relatively cheap: ~ 0.075 €/MB

e SRAM cells (registers) are costly (they require six transistors per bit instead
of just one, more wiring, more space): ~ 0.75 €/MB

4 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

The solution: caching, caching and more caching

Modern computer architectures use a large amount of slow and cheap DRAM
cells, as well as a small amount of fast and costly SRAM cells:

e L3 (unified) cache

e L2 (unified) cache

e L1 unified cache /L1 data cache

e L1 instruction cache / Trace cache
e Translation Lookaside Buffer (TLB)
e Branch Target Instruction Cache

e Write combining registers

e CPU general-purpose registers

5 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

A new idea?! (A digression)

“Ideally one would desire an indefinitely large memory capacity such
that any particular [word] would be immediately available. .. It does not
seem possible to achieve such a capacity. We are therefore forced
to recognize the possibility of constructing a hierarchy of memories,
each of which has greater capacity than the preceding but which is less
quickly accessible.”

Preliminary discussion of the logical design of an electronic computing instrument,
Burks, Goldstine, von Neumann, 1946

6 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Locality principles
Why is caching beneficial ?

Spatial locality: In a short time frame, the executed instructions
e are generally in a small area of memory

e access memory cells that are close to one another

Temporal locality: In a short time frame, the executed instructions
e are likely to be executed again

e access memory cells that will likely be accessed again

7 Linux, the caches, and you

March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Performance gain of caches

We measured execution times of a discrete FFT on increasingly larger data sets
with and without L1/L2 caches, both on an Intel Pentium 4 and on a Freescale
MPC7447A PowerPC

Cache speedup

o B0 4%
L 55 Y

= P4
B 35 L\ =

c PPC
£ 0 L e *

16 17 18 19 20 21 22
Data size (log2)

8 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

The bottom rule

When coding, you should always keep in mind the cache problem:

e How is your code accessing data? Is it fully exploiting the caches?

e What are the most frequently executed functions/loops/fragments in your
code? Are they optimized for fully exploiting the caches?

In many cases, cache-conscious algorithms achieve significant
performance gains

9 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

A “real-world” code fragment as a cache benchmark

for (i=0; i<reps; ++i) { in reps iterations:
t += x[j]; read data from array x[0. .n-1]
j += d; skip d elements of x
if (j >= n) in case of overflow:
j -= n; wrap around the index j
}

The benchmark consists of measuring the execution time of this loop for many
different values of array size n and skipping delta d, and dividing the time by reps

The number of iterations reps is large (e.g., 10000000), so each benchmark
value is roughly the average execution time of one access to the array x

10 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Measuring the execution time

In order to measure the execution time of a code fragment, we can use the Time
Stamp Counter device found in many CPUs (yet another fine trick learned from
the Linux source code!)

For example, in the |A-32 microprocessors, a 64-bit register stores a counter that
is incremented once every CPU clock signal

The rdtsc Assembly language instruction reads the value in this register and
stores it into the eax and edx general-purpose registers

Thus, all we need is a bit of gcc’s extended inline Assembly magic:

#define _rdtscll(val) asm volatile("rdtsc" : "=A" (val))

11 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

nanoseconds / access

Making sense out of benchmark values

22
20 H
18 umﬂtﬂ'ﬂ{lﬂ'ﬂﬂﬂd{lﬂlﬂl‘ﬂ
=]
a D=1
18
+ D=3 I’{" b B bbb
14 v D=5
12 a D=7 .‘//J &ﬂﬁﬂ.&.ﬂ&.ﬁﬂ.ﬂ&.ﬁﬂ.ﬂ&
» D=8 ffq{.l
10 < D=11 b
4}?(v?vvv? PN P RT T
H D=13
2
&
4
0 III
Y% % AEFRRE G h G b b b B % o %, M P,
data size
12 Linux, the caches, and you

e Eachcurveis a
different delta d
(cache line=32
byte)

e At smallest data
sizes, caches are
not fully exploited

e “Knees” at cache
size boundaries
(L1=32 KB,

L2=2 MB)

March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Cache-friendly access to data
Ordering of data accesses does matter. A lot.

For example, matrices are usually stored in memory row by row.
We can sequentially scan the elements of a matrix in two ways:

Row by row: Column by column:
for (row=0; row<n; ++row) for (col=0; col<n; ++col)
for (col=0; col<n; ++col) for (row=0; row<n; ++row)
x[row] [col] *= c; x[row] [col] *= c;

Although these code fragments are functionally equivalent, their execution times
differ significantly

13 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

nanoseconds / access

Execution times of “row by row” and “column by column” scannings

128,55 11447
a0 [j [4410} [}
25 A by row ﬂ i

by column
m ;ﬁgggﬁl BMNJW YLl
15
10
I--IIIIIIIIIIIIIIIIIIIIII_-|_IIIIIII||||||

5 _rﬂjj_m
DII

Gy Wy By fq% o% '5'!% --‘a~ -rb L J)% Vz% 1?% ‘{9% ﬁ:?% Lf-‘a% ﬂ}% %00 *E:GG 1“;06 '3}0.5 0"}% %ﬁa %Ga %0.5 5?00

n

14 Linux, the caches, and you

e In the row by row

scanning, access
time to each element
IS constant

In the column by col-
umn scanning, ac-
cess time grows with
maitrix size

In the column by
column scanning
there are high peaks
when matrix size
n is a multiple of
some cache size
parameter (n equal
to 3200, 4800, 6400,
8000, 9600...)

March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Field reordering in large structures

A well-established optimization technique consists in reordering the fields in
large structures according to their access frequencies

By putting the most frequently accessed fields near the head of the structure,
we raise the likelihood of having the corresponding memory cells mirrored in the
hardware caches

It is quite difficult to evaluate the performance gain obtained by this rule

However, sticking to it should never make any harm

15 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Field reordering in Linux

For example, the first fields of the process descriptor in Linux 2.6.15 are:

struct task_struct {

volatile long state;

struct thread_info *thread_info;
atomic_t usage;

unsigned long flags;

unsigned long ptrace;

int lock_depth;

int prio, static_prio;

16

struct list_head run_list;

[...]

Linux, the caches, and you

First cache line (32 bytes)

March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Prefetching

Today’s CPUs include instructions for prefetching, that is, moving data in a cache
before the data itself is effectively required

For example, IA-32 CPUs include some prefetchX Assembly instructions that
may induce the CPU to speculatively access a memory location

A typical scenario consists of scanning the elements of a list. For instance, the
Linux macro List _for_each yields the following code:

for (pos = head->next; prefetch(pos—>next),
pos != head; pos = pos—>next)

The prefetch macro is a hint for the CPU to read in advance the memory
location at pos—>next; the list element referenced by pos—>next will be ac-
cessed in the next iteration of the loop

17 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Explicit prefetching is dangerous!

You should never add pref etch instructions blindly: you must carefully analyze
and benchmark your code:

e Today’s CPUs perform speculative accesses to the DRAM so as to prefetch
data in the hardware cache transparently

e The prefetch instructions have a cost: for instance, ~ 3.9 nsec on an
Intel Pentium 4 at 2.0 GHz, and =~ 0.6 nsec on an Intel Pentium M at 1.6 GHz

e The prefetch instructions steal space in the instruction cache; this is par-
ticularly bad if the instructions are inside a small loop

Thus, by using explicit prefetching you might actually impair your code!

18 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Prefetching on list scanning

e If the time spent in

g;g’ - processing eac_h

i ¢ . list element s

= - - small (2 nsec),

" 320 scanning without

o 275 = prefetching is

£ 250 faster; time differ-

- ence is roughly

“ the execution time

S of the prefetch
3 instruction

S

§ 100 R @ work=2ns, w/ pref e If the time spent in

751+—=R el processing each

501 & A work=162ns, wio pref list element is

251 o comparable to the

ow_____ - - < < < DRAM access

0 G & By Ty Vg M K R Ky Y H % B B o S B 2 W B % B R B W, time, scanning

element size (bytes) with prefetching is

much faster
19 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Branch prediction

In today’s CPUs, machine instructions are executed in parallel whenever possi-
ble: the pipeline includes many instructions in different stages of execution

Branch prediction can be viewed as another caching technique:

e |t consists of guessing the path that will be taken by a conditional jump well
before the outcome of the jump condition has been determined

e |t is usually either dynamic (based on the past branches taken by that par-
ticular jump) or static (if no branch history is available)

A well-predicted jump is very cheap (typically, zero or one CPU cycles), while a
mispredicted jump is very costly, because the instructions of the path not taken
must be removed from the pipeline

20 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Static branch prediction

The rule for static branch prediction in IA-32 CPUs is simple:
e Any forward jump (positive offset) is predicted not to be taken

e Any backward jump (negative offset) is predicted to be taken

Forward jump: Backward jump:

jxx 10 11:

(likely branch) (likely branch)
10: jxx 11

(unlikely branch) (unlikely branch)

21 Linux, the caches, and you

March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Exploiting the static branch prediction

In order to generate code that is aware of the static branch prediction rule, Linux
defines the following macros:

#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)

They rely on the ~ builtin expect gcc’s extension, which forces the com-
piler to generate code optimized for the case in which x is, respectively, expected
to be O or 1

On |A-32, “if (unlikely(current->state == TASK_STOPPED))” generates ei-
ther a branch-if-true forward jump or a branch-if-false backward jump

22 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Static branch prediction with gcc 4.1

The gcc 4.1 compiler allows you to tag the branches in your code without “wild
guesses’:

1. Compile your program by enabling code optimization (for instance, —02) and
by using the -fprofile—arcs option to gcc

2. Run your program in a typical scenario

3. Compile again your program by using the same optimization flags as in
step 1 (—-02) and by using the -fbranch-probabilities option to gcc

All done! The compiler will generate code optimized for the branches effectively
taken in the run at step 2

23 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Out-of-section branching

Linux stretches the concept of optimizing branch prediction a bit further

Branches corresponding to exceptional or anomalous conditions are not stored
in the section of normal code; instead, they are put in a different section:

jXx oops

(normal, likely branch)

.section .fixup
oops:
(exceptional, unlikely branch)

.previous

24 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Out-of-section branching in C

A sort of out-of-section branching can be implemented directly in C by means of
a gcc’s extension:

void oops_handler(void)

__attribute__((section(".exceptions")));

[..]

if (unlikely(oops_condition))
oops_handler () ;

To specify the address of the new section of code, pass an option to the linker:

in/d: 1d --section-start .exceptions=0x08049000 prog.o
iIn gcc. gcc -02 -Wl,--section-start, .exceptions=0x08049000 prog.c

25 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Function reordering in gcc 4.1

Moving functions across different sections might be beneficial for the program’s
performances

If all the most frequently accessed functions are placed in some section of code
(let's say, text .hot) while all the less frequently accessed functions are placed
in another section (text.unlikely), there would be a higher number of hits
versus misses in the hardware caches

This can be done automatically by the gcc 4.1 compiler! You must enable opti-

mization, use the —fprofile—arcs option, and compile twice, as described
earlier

26 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Function reordering in the kernel

Performances of User Mode programs improve with function reordering: shouldn’t
this hold also for the kernel?

Arjan van de Ven (a well-known kernel hacker working at Intel) is currently de-
veloping a Linux patch for the x86_64 architecture precisely with this goal

In particular, the patch makes use some features of the gcc 4.1 compiler to:

e Move the kernel image so that it starts at physical address 2 MB (that is, at
the beginning of a physical memory area mapped by a large TLB entry)

e Move code tagged as unlikely () in a separate section
e Put the most frequently accessed functions starting at the 2 MB boundary

In some Imbench benchmarks, Arjan claims a 10% gain in performances!!

27 Linux, the caches, and you March 8, 2006

Linux Kernel Hacking Free Course, 3rd edition

Conclusions

e Someone is still arguing that Unix’s heritage makes Linux obsolete, but let’s
face it: Linux is on the bleeding edge of software development

e Reading Linux source code may expose a programmer to new, risky, and
amazing ideas

e Finally, Linux might help you in many ways. .. even if you don’t run it!

28 Linux, the caches, and you March 8, 2006

