Linux Kernel Hacking Free Course, 3rd edition

R. Gioiosa
University of Rome “Tor Vergata”

Kernel modules

JIE

February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Index

e Four questions: what, why, when, how...

1 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Index

e Four questions: what, why, when, how...

e A simple kernel module

1 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Index

e Four questions: what, why, when, how...

e A simple kernel module

e Proc file system

1 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Index

e Four questions: what, why, when, how...

e A simple kernel module

e Proc file system

e Module parameters

1 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

What is a kernel module (1)

Linux provides the ability of inserting (and removing) services offered by the
kernel at run time

2 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

What is a kernel module (1)

Linux provides the ability of inserting (and removing) services offered by the
kernel at run time

Every piece of code that can be loaded (and unloaded) at run time is called a
kernel module

2 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

What is a kernel module (1)

Linux provides the ability of inserting (and removing) services offered by the
kernel at run time

Every piece of code that can be loaded (and unloaded) at run time is called a
kernel module

A kernel module works as a dynamic library for user mode applications, but it
works in kernel space!

2 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

What is a kernel module (2)

A kernel module provides a new service (or services) available to users.

3 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

What is a kernel module (2)

A kernel module provides a new service (or services) available to users.

Once a module is loaded and the new service registered, the service can be
used by all the processes, as long as the module is in memory...

3 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

What is a kernel module (2)

A kernel module provides a new service (or services) available to users.

Once a module is loaded and the new service registered, the service can be
used by all the processes, as long as the module is in memory...

After unloading a module makes the service not longer available!

3 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Why should we use kernel modules

Not all the kernel services or features are required every time into the kernel:

a module can be loaded only when it is necessary (ex. usb-storage), saving
memory

4 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Why should we use kernel modules

Not all the kernel services or features are required every time into the kernel:

a module can be loaded only when it is necessary (ex. usb-storage), saving
memory

A kernel module can be easily ported across different kernel versions

4 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Why should we use kernel modules

Not all the kernel services or features are required every time into the kernel:

a module can be loaded only when it is necessary (ex. usb-storage), saving
memory

A kernel module can be easily ported across different kernel versions

Don't forget we are supposed to be kernel hackers! Kernel modules can be
loaded and unloaded several time, allowing us to test and debug our code with-
out rebooting the machine!

4 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

When writing a kernel module

There are some cases in which a kernel module is desirable;

5 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

When writing a kernel module

There are some cases in which a kernel module is desirable;

e Device drivers

5 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

When writing a kernel module

There are some cases in which a kernel module is desirable;

e Device drivers

e Filesystems

5 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

When writing a kernel module

There are some cases in which a kernel module is desirable;

e Device drivers

e Filesystems

e Network protocols

5 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

When writing a kernel module

There are some cases in which a kernel module is desirable;

e Device drivers

e Filesystems

e Network protocols

The core part of the kernel must be self-contained, everything else could be
written as a kernel module!

5 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

How to write a kernel module (1)

There are two methods that can be used to write a kernel module:

6 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

How to write a kernel module (1)

There are two methods that can be used to write a kernel module:

1. Insert the source code into the Linux kernel main source tree

6 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

How to write a kernel module (1)

There are two methods that can be used to write a kernel module:

1. Insert the source code into the Linux kernel main source tree

2. Write the code in a separate directory, without modifying any file in the main
source tree.

6 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

How to write a kernel module (2)

The first choice involves modifying the Kconfig and the main Makefile according
to the position of our code in the main source tree.

7 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

How to write a kernel module (2)

The first choice involves modifying the Kconfig and the main Makefile according
to the position of our code in the main source tree.

These steps have to be reproduced every time a new kernel version is released,
so a kernel patch is usually built.

7 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

How to write a kernel module (2)

The first choice involves modifying the Kconfig and the main Makefile according
to the position of our code in the main source tree.

These steps have to be reproduced every time a new kernel version is released,
so a kernel patch is usually built.

The second choice provides more flexibility. However (in contrast with Linux
2.4) the kernel must already be configured and built: kernel modules are linked
against object files in the main source tree. We'll follow this method.

7 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Loading/unloading a module

Once the module has been written, it has to be loaded into the kernel.

8 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Loading/unloading a module

Once the module has been written, it has to be loaded into the kernel.

e insmod inserts a kernel module and its data into the kernel; the module
must be relocated in memory (as Id does for a dynamic library)

8 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Loading/unloading a module

Once the module has been written, it has to be loaded into the kernel.

e insmod inserts a kernel module and its data into the kernel; the module
must be relocated in memory (as Id does for a dynamic library)

e modprobe works as insmod, but it also checks module dependencies
(e.g. msdos and vfat modules). It can only load a module contained

In the /1ib/modules/ directory

Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Loading/unloading a module

Once the module has been written, it has to be loaded into the kernel.

e insmod inserts a kernel module and its data into the kernel; the module
must be relocated in memory (as Id does for a dynamic library)

e modprobe works as insmod, but it also checks module dependencies
(e.g. msdos and vfat modules). It can only load a module contained
In the /1ib/modules/ directory

e rmmod removes a loaded module and all its services from the running ker-
nel.

8 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Before starting: some useful considerations...

Linux Kernel Hacking Free Course, 3rd edition

Before starting: some useful considerations...

e Once loaded, a kernel module waits for user requests: in reply to this event,
It executes the new service

9 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Before starting: some useful considerations...

e Once loaded, a kernel module waits for user requests: in reply to this event,
It executes the new service

e Modules can only use exported functions, a collection of functions available
to kernel developers (a kind of function library...).

9 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Before starting: some useful considerations...

e Once loaded, a kernel module waits for user requests: in reply to this event,
It executes the new service

e Modules can only use exported functions, a collection of functions available
to kernel developers (a kind of function library...). The function must be part
of the kernel at the time it is invoked!

9 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Before starting: some useful considerations...

e Once loaded, a kernel module waits for user requests: in reply to this event,
It executes the new service

e Modules can only use exported functions, a collection of functions available
to kernel developers (a kind of function library...). The function must be part
of the kernel at the time it is invoked!

e Aswell as every kernel program, floating-point operations should be avoided.

9 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Before starting: the Makefile

ifneq ($(XERNELRELEASE),)
obj-m:= esl.o
else
KERNELDIR 7= /lib/modules/$(shell uname -r)/build
PWD:= $(shell pwd)
default:
$ (MAKE) -C $(KERNELDIR) M=$(PWD) modules
endif

.PHONY: clean
clean:
rm -rf *.0 *7 core .depend .*.cmd *.ko *.mod.c

10 Kernel modules

February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: the include part

Depending on which services and functions we need in our module, several
header files should be included.

11 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: the include part

Depending on which services and functions we need in our module, several
header files should be included. For a simple kernel module we need to include

at least the following:
#include <linux/module.h>
#include <linux/kernel.h>

#include <linux/init.h>

which define some essential macros and function prototypes.

11 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: the register function

The module initialization function is used in order to register any service provided
by the module.

12 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: the register function

The module initialization function is used in order to register any service provided
by the module.

static int __init esl1_init(void)

{
printk("LKH: ES1 module loaded\n");
return O;

}

12 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: the register function

The module initialization function is used in order to register any service provided
by the module.

static int __init esl1_init(void)

{
printk("LKH: ES1 module loaded\n");
return O;

}

The function is defined static because it should not be visible outside the file;
the _init token tells the kernel that the function can be discarded after the
initialization phase.

12 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: The unregister functions

The unregister function must remove all the resources allocated by the init func-
tion so that the module can be safely unloaded.

13 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: The unregister functions

The unregister function must remove all the resources allocated by the init func-
tion so that the module can be safely unloaded.

static void _ _exit esl_exit(void)

{
printk("LKH: ES1 module unloaded\n");
¥

13 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: The unregister functions

The unregister function must remove all the resources allocated by the init func-
tion so that the module can be safely unloaded.

static void __exit esl_exit(void)
{

printk("LKH: ES1 module unloaded\n");
+

The token __exit tells the compiler that the function will be invoked only during

the unloading phase (the compiler puts this function in a special section of the
ELF file)

13 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: Who calls the register/unregister functions?

insmod needs to know what function to call when loading the module;

14 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: Who calls the register/unregister functions?

insmod needs to know what function to call when loading the module; this
Information is passed to the compiler by means of the following macro:

module_init(esl_init);

14 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: Who calls the register/unregister functions?

insmod needs to know what function to call when loading the module; this
Information is passed to the compiler by means of the following macro:

module_init(esl_init);

The macro adds a special section to the object file that will include the init func-
tion.

14 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: Who calls the register/unregister functions?

insmod needs to know what function to call when loading the module; this
Information is passed to the compiler by means of the following macro:

module_init(esl_init);

The macro adds a special section to the object file that will include the init func-
tion.

As well as insmod, the kernel needs to know the function to invoke when un-
loading the module.

14 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: Who calls the register/unregister functions?

insmod needs to know what function to call when loading the module; this
Information is passed to the compiler by means of the following macro:

module_init(esl_init);
The macro adds a special section to the object file that will include the init func-
tion.

As well as insmod, the kernel needs to know the function to invoke when un-
loading the module.

module_exit(esl_exit);

14 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: Ok, we’re done! Almost...

Some other information should be added to the module:

15 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: Ok, we’re done! Almost...

Some other information should be added to the module:

MODULE_AUTHOR ("Roberto Gioiosa");
MODULE_DESCRIPTION("Linux Kernel Hacking 06 - Es.1");
MODULE_LICENSE("GPL");

MODULE_VERSION("1.0");

15 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: let’'s compile!

If everything is ok we should be able to compile and insert the module:

16 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: let’'s compile!

If everything is ok we should be able to compile and insert the module:

#make
make -C /lib/modules/2.6.15.1/build M=/home/gioiosa/teaching/1kh06/lect3/esl modules
make[1]: Entering directory ¢/usr/src/linux-2.6.15.1°
CC [M] /home/gioiosa/teaching/1kh06/lect3/esl/esl.o
Building modules, stage 2.
MODPOST
CC /home/gioiosa/teaching/1kh06/lect3/esl/esl.mod.o
LD [M] /home/gioiosa/teaching/1kh06/lect3/esl/esl.ko
make[1]: Leaving directory ¢/usr/src/linux-2.6.15.1°

16 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

A simple module: let’'s compile!

If everything is ok we should be able to compile and insert the module:

#make
make -C /lib/modules/2.6.15.1/build M=/home/gioiosa/teaching/1kh06/lect3/esl modules

make[1]: Entering directory ¢/usr/src/linux-2.6.15.1°
CC [M] /home/gioiosa/teaching/1kh06/lect3/esl/esl.o
Building modules, stage 2.

MODPOST
CC /home/gioiosa/teaching/1kh06/lect3/esl/esl.mod.o

LD [M] /home/gioiosa/teaching/1kh06/lect3/esl/esl.ko
make[1]: Leaving directory ¢/usr/src/linux-2.6.15.1°

Finally we simply execute the following command (as root) in order to load the
module:

#insmod esl.ko

16 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

The proc filesystem

Kernel data structures are not available in user mode, anyway some of them may
be useful for system administration and some kind of user processes.

17 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

The proc filesystem

Kernel data structures are not available in user mode, anyway some of them may
be useful for system administration and some kind of user processes.

The proc filesystem is a pseudo-filesystem used to export some kernel data
structures (such as the amount of memory present in the system, /proc/meminfo,
or the type of cpu installed, /proc/cpuinfo).

17 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

The proc filesystem

Kernel data structures are not available in user mode, anyway some of them may
be useful for system administration and some kind of user processes.

The proc filesystem is a pseudo-filesystem used to export some kernel data
structures (such as the amount of memory present in the system, /proc/meminfo,
or the type of cpu installed, /proc/cpuinfo).

The proc filesystem can also be used by the system administrator as a chan-
nel for configuring the kernel. The system administrator writes proper values to
some files of the proc filesystem

17 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

ES2: Create a new proc filesystem directory using a kernel module

In the next example we are going to write a kernel module that creates a new
entry in the proc filesystem

18 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

ES2: Create a new proc filesystem directory using a kernel module

In the next example we are going to write a kernel module that creates a new
entry in the proc filesystem

The entry will be created during the initialization phase and removed by the
cleanup function.

18 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

ES2: Create a new proc filesystem directory using a kernel module

In the next example we are going to write a kernel module that creates a new
entry in the proc filesystem

The entry will be created during the initialization phase and removed by the
cleanup function.

Because modifying the proc file system cannot be done in user mode, we have
to work at kernel level.

18 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

ES2: Create a new proc filesystem directory using a kernel module

In the next example we are going to write a kernel module that creates a new
entry in the proc filesystem

The entry will be created during the initialization phase and removed by the
cleanup function.

Because modifying the proc file system cannot be done in user mode, we have
to work at kernel level. A kernel module is the ideal tool for this job, let’s do it!

18 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

ES2: The init function

A new directory in the proc filesystem is created through using:

struct proc dir entry* proc mkdir(const char *name,struct
proc dir entry *parent)

which returns a pointer to:

19 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

ES2: The init function

A new directory in the proc filesystem is created through using:

struct proc dir entry* proc mkdir(const char *name,struct
proc dir entry *parent)

which returns a pointer to:

struct proc dir entry* 1lkh pde;

19 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

ES2: The headers

#include
#include
#include

#include

<linux/module.h>
<linux/kernel.h>
<linux/init.h>
<linux/proc_fs.h>

static struct proc_dir_entry* lkh_pde;

20

Kernel modules

February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

ES2: The init function

static int __init es2_init(void){
1kh_pde = proc_mkdir("1lkh",NULL);
if (11kh_pde)
{
printk (KERN_ERR "V;s: error creating proc_dir_entry!\n",
MODULE_NAME) ;
return -1;
}
Dprintk("proc dir created\n");
Dprintk ("module loaded\n");
return O;

}

21 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

ES2: The cleanup function

static void __exit es2_exit(void)

{
remove_proc_entry("1lkh" ,NULL) ;

Dprintk("proc dir removed\n");
Dprintk("module unloaded\n");

}

22 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

ES3: Add a read-only proc file

#include
#include
#include

#include

<linux/module.h>
<linux/kernel.h>
<linux/init.h>
<linux/proc_£fs.h>

static struct proc_dir_entry* lkh_pde;

static struct proc_dir_entry* entry;

static int es3_var = 10;

23

Kernel modules

February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

ES3: Add a read-only proc file (2)

static int es3_read(char* page,char** start,off_t off,

{

24

int count,int* eof,void* data)
int written = O;

written = sprintf (page,"var = %d\n",es3_var);
*start = pagetoff;
if (strlen(page) == written)
*eof = 1;
Dprintk("es3_read done.\n");
return written-off;

Kernel modules

February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

ES3: Add a read-only proc file (3)

static int __init es3_init(void)
{
1kh_pde = proc_mkdir("1lkh",NULL);
if (11kh_pde)
{
printk (KERN_ERR "/s: error creating proc_dir entry!\n",MODULE_NAME)
goto err;
+
Dprintk ("proc dir created\n");
entry = create_proc_entry("foo",0444,1kh_pde) ;

25 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

ES3: Add a read-only proc file (4)

if (lentry)
{
printk (KERN_ERR "V;s: error creating proc_entry!\n",MODULE_NAME) ;
goto err_dir;
}
entry->data = NULL;
entry->owner = THIS_MODULE;
entry->read_proc = es3_read;
entry->write_proc = NULL;
Dprintk ("proc entry created\n");

26 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

ES3: Add a read-only proc file (6)

Dprintk("module loaded\n");
return O;

err_dir:
remove_proc_entry("1lkh" ,NULL) ;
Dprintk("proc dir removed\n");
err:

return -1;

27 Kernel modules

February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

ES3: Add a read-only proc file (5)

static void __exit es3_exit(void)

{
remove_proc_entry("foo",1kh_pde) ;
Dprintk("proc entry removed\n");
remove_proc_entry("1lkh" ,NULL) ;
Dprintk("proc dir removed\n");
Dprintk("module unloaded\n");

module_init(es3_init);

module_exit(es3_exit);

28 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Module parameters (1)

Parameters can be used in order to change the module behavior,

29 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Module parameters (1)

Parameters can be used in order to change the module behavior, they can
be assigned at load time using insmod or modprobe.

29 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Module parameters (1)

Parameters can be used in order to change the module behavior, they can
be assigned at load time using insmod or modprobe. The last command
can also read module parameters and their values from its configuration file
/etc/modprobe.comf

29 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Module parameters (1)

Parameters can be used in order to change the module behavior, they can
be assigned at load time using insmod or modprobe. The last command
can also read module parameters and their values from its configuration file

/etc/modprobe.comf
A module parameter is defined as:

static int pvar = 13;

module_param(pvar,int,S_IRUGO) ;

29 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Module parameters (2)

The last argument of module param is a permission bit-mask used by the sys
Interface:

30 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Module parameters (2)

The last argument of module param is a permission bit-mask used by the sys
interface: the file /sys/module provides the value of the module parameters

30 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Module parameters (2)

The last argument of module param is a permission bit-mask used by the sys
interface: the file /sys/module provides the value of the module parameters
(it can also be used to modify those values but the module behavior might not
change...)

30 Kernel modules February 1, 2006

Linux Kernel Hacking Free Course, 3rd edition

Module parameters (2)

The last argument of module param is a permission bit-mask used by the sys
interface: the file /sys/module provides the value of the module parameters
(it can also be used to modify those values but the module behavior might not
change...)

The following command loads the module es6 assigning a value to the parame-
ter pvar:

insmod es6 pvar=27

30 Kernel modules February 1, 2006

